

Introduction to N-mixture models

Short course

Marc Kéry

EURING Technical Meeting Athens/GA, 28 April 2013

Preamble on occupancy and N-mixture models

Occupancy model

Data (y _{ij})	Latent state (z _i)
0-1-0	1
1-0-1	1
1-1-1	1
0-0-0	0
0-0-0	1

State model: $z_i \sim Bernoulli(\psi_i)$

Observation model: $y_{ij} \sim Bernoulli(z_i p_{ij})$

• MacKenzie et al. (*Ecol.*, 2002); Tyre et al. (*Ecol. App.*, 2003)

Preamble on occupancy and N-mixture models

"The" Nmix model

Data (y_{ij}) Latent state (N_i)

0-3-0

1-0-1 2

6-3-4

0-0-0

0-0-0

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_{ij} \sim Binomial(N_i, p_{ij})$

Royle (Biometrics, 2004)

Outline of talk

- Introduction to Nmix family
- The "classical" Nmix model
- Assumptions and caveats
- Extensions and future directions

What are N-mixture models?

 Class of hierarchical models with one submodel for measurement error (detection probability) and another for spatial and/or temporal variation in latent abundance states (N):

```
N_{it} \sim f(\lambda_i) # Model for abundance N C_{ijt} \sim g(N_{it}, \, \theta_{ijt}) # Measurement error model
```

- For variation of abundance (N), parametric (mixing) distribution is assumed -> N-mixture models
- Require data that are informative on measurement error for N, replicated in space (usually) and/or time (sometimes)
- Usually counts

N-mixture models as hierarchical models

 Hierarchical models (HM): nested sequence of random variables (observed or unobserved)

$$x \sim f(\omega)$$

 $y \sim g(x, \theta)$

e.g., randomised block ANCOVA ("mixed model")

$$\alpha_{i} \sim Normal(\mu, \sigma_{\alpha}^{2})$$
$$y_{ij} \sim Normal(\alpha_{i} + \beta * x_{ij}, \sigma^{2})$$

"The" N-mixture model ("explicit" HM)

$$N_i \sim Poisson(\lambda_i)$$

 $y_{ii} \sim Binomial(N_i, p_{ii})$

Beauty and power of hierarchical models

- Can combine different pieces according to data collection protocol, modeling objectives, ...
- Nmix models for different observation protocols
- Family of N-mixture models
- by the way: terms "hierarchical model" and "state-space model" are synonymous to a large extent

Types of Nmix models: "the" Nmix model

Poisson/Binomial mixture model

Data (y_{ii}) Latent state (N_i)

-3-

3

1-*-1

2

6-3-*

9

0-*-*

0

*-0-0

2

(* denote NAs; pose no problems)

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_{ij} \sim Binomial(N_i, p_{ij})$

Royle (Biometrics, 2004)

Types of Nmix models: Poisson/Bernoulli Nmix

Data: detection/nondetection at site i during survey j

Data (y_{ii}) Latent state (N_i)

0-1-0

3

1-0-1

2

1-1-1

9

0-0-0

 $\mathbf{0}$

0-0-0

2

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_{ij} \sim Bernoulli(p_{ij})$

with $p_{ij} = 1 - (1-r_{ij})^{Ni}$

and $r_{ij} = per-individual detectability$

Royle & Nichols, Ecology, 2003 ("Royle-Nichols model")

Types of Nmix models: Poisson/Multinomial Nmix

- Many variants depending on data collection protocol, e.g., removal sampling
- Data: counts of "removals" in each time period j (= class k)

Data (y_{ik})
 Latent state (N)

5-1-0 8

3-1-2

1-1-0 5

0-0-0

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_i \sim Multinom(N_i, \Pi_{ik})$

with $\Pi_{ik} = f(p_{ij})$

• e.g., Royle, *Animal Biodiversity and Conservation*, 2004; Dorazio et al., *Biometrics*, 2005

Types of Nmix models: Poisson/Multinomial Nmix

Capture-recapture or double-observer sampling

• Data: # of each capture history k: e.g., 100, 010, 001, ...

Data (y_{ik})
 Latent state (N_i)

2-1-3-0-0-1-0

0-1-0-0-3-1-0

0-0-1-0-0-0

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_i \sim Multinom(N_i, \Pi_{ik})$

with $\Pi_{ik} = f(p_{ij})$

• e.g., Royle et al., *Ecol. Mono.*, 2007; Webster et al, *JABES*, 2008

Types of Nmix models: Poisson/Multinomial Nmix

Distance sampling (with binned distances)

Data: Counts in each distance class k

• Data (y_{ik}) Latent state (N_i)

2-1-3 8

3-1-0 5

1-0-0

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_i \sim Multinom(N_i, \Pi_{ik})$

with $\Pi_{ik} = f(p_i)$

• e.g., Royle et al., Ecol., 2004; Sillett et al, Ecol. Appl., 2012

Types of Nmix models: Poisson/Poisson Nmix

- Counts of animal cues etc.
- Vector of counts, e.g., of fecal pellets, tracks along transect

• Data (y_{ij}) Latent state (N_i)

10-12-8

3-1-0 5

3-2-5

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_{ij} \sim Poisson(N_i * \theta_{ij})$

e.g., Stanley & Royle, JWM, 2005;
 Guillera-Arroita et al., JABES, 2011

Other types of Nmix models

- Other published examples, by switching type of distribution for either abundance or detection
- see later for some alternative abundance models
- ditto for elaborations on detection model

Nmix models and occupancy models

 Seminal role of occupancy model of MacKenzie et al. (Ecology, 2002) and Tyre et al. (Ecol. Appl., 2003)

Historically:

$$z_i \sim \text{Bern}(\psi_i)$$
 $N_i \sim \text{Pois}(\lambda_i)$ $N_i \sim \text{Pois}(\lambda_i)$ $y_{ij} \sim \text{Bern}(z_i * p_{ij})$ $y_{ij} \sim \text{Bern}(p_{ij})$ $y_{ij} \sim \text{Bin}(N_i, p_{ij})$

So, are Nmix models site-occupancy models?

Are Nmix models site-occupancy models?

- Yes, since any description of spatio-temporal patterns in abundance can be turned into a description in terms of occurrence/occupancy
- Occurrence (z) is deterministic function of abundance (N):
 z = I(N > 0)
- Analogous with occupancy probability (ψ) : $\psi = \text{Prob}(N > 0)$
- Occupancy: "the poor man's abundance"
- see, e.g., Dorazio, *Ecology*, 2007

Are Nmix models site-occupancy models?

- No, since Nmix models are not a special case of occupancy models
- Rather, both instances of "explicit" hierarchical models
- by "explicit" we mean that parameters have explicit biological meaning, e.g., abundance (N), occurrence (z)
- Unlike "expected abundance" or "expected occurrence" in many other hierarchical models for abundance or distribution
- (Calling Nmix models would be like calling all GLMs Probit regressions)

Should counts ever be degraded to det/nondet data?

- Never!
- Only if absolutely have to, e.g. if assumptions of Nmix not warranted
- see later

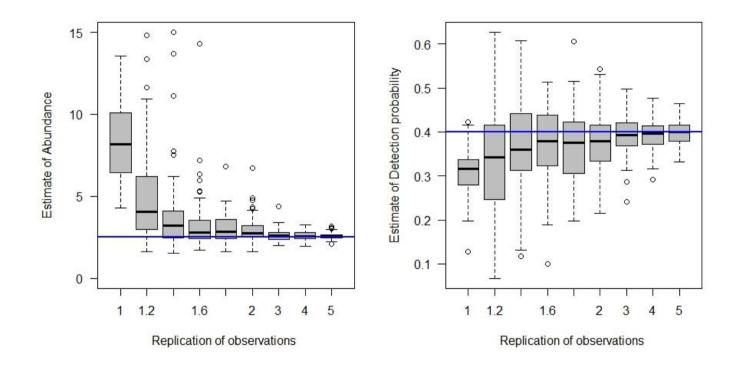
An exercise in hierarchical modeling

- Re-invent the "classical" Nmix model from first principles
- most basic extension to model: adding covariates
- -> exercise on black board

Different descriptions of Nmix model

- HM for counts replicated at R sites and T occasions with one mixture distribution (with param λ) for latent abundance states (N) and another distribution for observation process (with param p)
- "Explicit" HM: Parameters N have explicit biological meaning (if model well-specified)
- Nested GLM: Poisson GLM for N plus logistic regression as measurement error model
- Non-standard GLMM: logistic regression with nonstandard random effects (not normal, not continuous)

The need for replication



- but see work by Lele, Moreno, Solymos (fit Nmix to unreplicated data using penalized likelihood)
- Also F. Korner (unpublished ms)

Fitting of Nmix model

- Likelihood or Bayesian analysis
- Software: MARK, PRESENCE, R package **unmarked**, BUGS family, R, Matlab, PyMC,
- Likelihood analysis:

$$L(p, \theta | \{n_{it}\}) = \prod_{i=1}^{R} \left\{ \sum_{N_i = \max_t n_{it}}^{\infty} \left(\prod_{t=1}^{T} \operatorname{Bin}(n_{it}; N_i, p) \right) f(N_i; \theta) \right\}$$

Fitting of Nmix model

- Likelihood or Bayesian analysis
- Software: MARK, PRESENCE, R package unmarked, BUGS family, R, Matlab, PyMC,
- Likelihood analysis:

$$L(p, \theta | \{n_{it}\}) = \prod_{t=1}^{R} \left\{ \sum_{N_i = \max_t n_{it}}^{\infty} \left(\prod_{t=1}^{T} \operatorname{Bin}(n_{it}; N_i, p) \right) f(N_i; \theta) \right\}$$

- Infinite summation: replace infinity with reasonable upper summation limit (K) for N, e.g., 50, 100, ...
- Choose K such that likelihood for N>K approx. 0

Likelihood analysis of Nmix model

e.g., function pcount() in R package unmarked:

```
pcount(formula, data, K, mixture=c("P", "NB", "ZIP"),
  starts, method="BFGS", se=TRUE, engine=c("C", "R"),
...)
```

- formula: R definition of linear models, e.g.,
 1 ~ 1 intercepts for p and N
 wind ~ elev wind affects p, elevation N
- K: summation limit for likelihood evaluation: default max(observed count) + 100
- mixture: Poisson, Negative binomial, Zero-inflated Poisson (see later)

Likelihood analysis of Nmix model

- Advantages of likelihood analysis of Nmix model in unmarked (and MARK, PRESENCE):
 - get MLEs fast
 - linear model speficifation as usual in R
 - model selection using AIC or LRT
 - numerically reliable
- Disadvantages:
 - can't do nonstandard models (but most interesting data/models are nonstandard)
 - e.g., no random effects
 - no additional levels of hierarchy in HM
 - but see unmarked function <code>gpcount()</code>: fits TE emigration Nmix (Chandler et al., *Ecology*, 2011)

Bayesian analysis of Nmix model in BUGS family

- latent states N not removed by integration/summation
- N updated as part of MCMC sampling scheme
- specify hierarchical model almost exactly as written in algebra
- many extensions and nonstandard models trivial to code

Bayesian analysis of Nmix model in BUGS family

```
model {
# Priors
lambda \sim dunif(0, 50)
p \sim dunif(0, 1)
# Likelihood
for (i in 1:R) {
# True state model for the only partially observed true state
  N[i] ~ dpois(lambda) # True abundance state N at site i
  for (j in 1:T) {
     # Observation model for the actual observations
     y[i,j] ~ dbin(p, N[i]) # Counts at i and j
z[i] < -step(N[i]-1)
                            # Occurrence indicator
# Derived quantities
total.N <- sum(N[]) # Total population size ar R sites
occ.fs <- mean(occ[])
                            # Finite sample occupancy
```


Bayesian analysis of Nmix model

Advantages:

- model structure totally transparent (unlike in R)
- usual advantages of Bayesian inference:
 - exact inference (no large-sample approximations)
 - random effects and other extensions trivial
 - estimates of latent variables (N) trivial; can do calculations on them
 - error propagation in derived quantities trivial (e.g., sum of N over R sites)
 - can introduce external information (informative priors)

• Disadvantages:

- usual disadvantages of Bayesian inference: e.g., prior sensitivity
- usual disadvantage of MCMC-based analysis: slow!
- convergence assessment sometimes difficult

Benefits of Nmix model

- Conceptionally simple and plausible model
- Heart of model: Poisson GLM (we all know Poisson GLMs!)
- Estimate and model abundance (N) from "cheap" data
- "Cheap": counts of unmarked individuals without individual identification (*)
- More data can be collected: e.g., more sites, more times, more temporal reps
- More information, e.g., about environmental relationships of abundance
- (*) BUT see next slide!

Assumptions of Nmix model

- Closure: N_i constant over all surveys
- (Note closure assumption more severe than in site-occ)
- No individual ID: across occasions ID ignored
- But ID not ignored within occasion! -> must exclude falsepositives (double counts)
- N_i individuals detected independently
- All N_i individuals at occasion j have same detection probability p_{ij} (can only model p_{ij}): for instance, ignores effect of distance
- Parametric assumptions of model:
 - Poisson (with covariates, random effects etc.)
 - Binomial (with covariates, random effects etc.)

Test of assumptions

- Closure: this is a judgement:
 - Is study duration short relative to dynamics of system?
 - Scale of movement of individuals relative to scale of sample plots (Efford & Dawson, *Ecosphere*, 2012)
- No-false-positives: similar judgment considerations, e.g., don't use model for (large) flocks
- Independent detections: ditto
- Homogeneity of detection (p_{ii}) and parametric assumptions:
 - Parametric bootstrap (likelihood analysis) GOF
 - Bayesian p-value GOF / posterior predictive checks (MCMC analysis)
 - in latter can test abundance and detection models separately (see p. 196 in Link & Barker, 2010)

Effects of assumptions violations

- Lack of closure: conventional wisdom: N_i refers to some superpopulation associated with sample plot
- can view as p-corrected index of per plot-abundance
- may be meaningless sometimes (i.e., when too much "temporary emigration")
- not sure about false positives, independent detections, parametric model assumptions?
- (but see Martin et al., MEE, 2011)

Remedies to assumption violations

Closure:

- design stage: make total study period short relative to system dynamics
- analysis stage: discard some of the data; open models (see later); do occupancy modeling instead
- No individual ID: not so much
- Independence of detection: model non-independence (e.g., Martin et al., MEE, 2011; Dorazio et al., MEE, 2012)
- Homogeneity of p_{ii}: not much to be done
- Parametric assumptions of model (Poisson, Binomial, etc):
 add complexity to model, e.g., covariates, random effects;
 see later

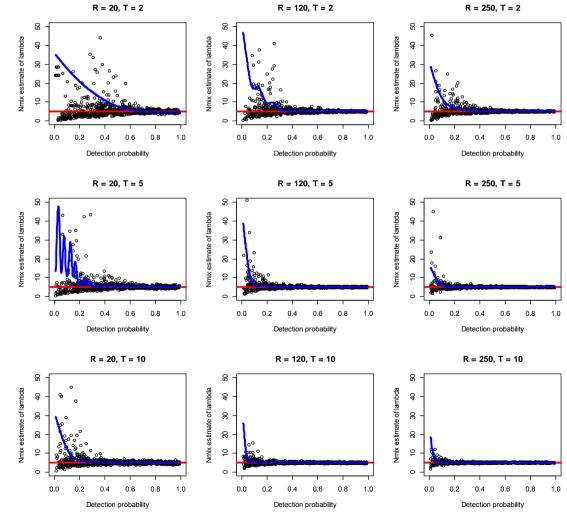
Identifiability problems in "the" Nmix?

- Bill Link (unpublished ms):
 - intercept estimates highly correlated
 - with correlation 1, Nmix reduces to limiting case of Poisson model with random site effects
- Emily Dennis et al. (unpublished note): similar observations
- Couturier et al. (JWM, 2013): MLEs sensitive to choice of K, especially for small p
- problems particularly with small p
- hence, stay tuned for new findings, be wary with small p
- Possible remedies: Jack up p, use weakly informative priors (or constraints on K), collect extra data, use other member of Nmix family if can (or else Poisson random-effects model; see work by Link and Sauer on BBS analyses)

Use simulation to check quality of inferences

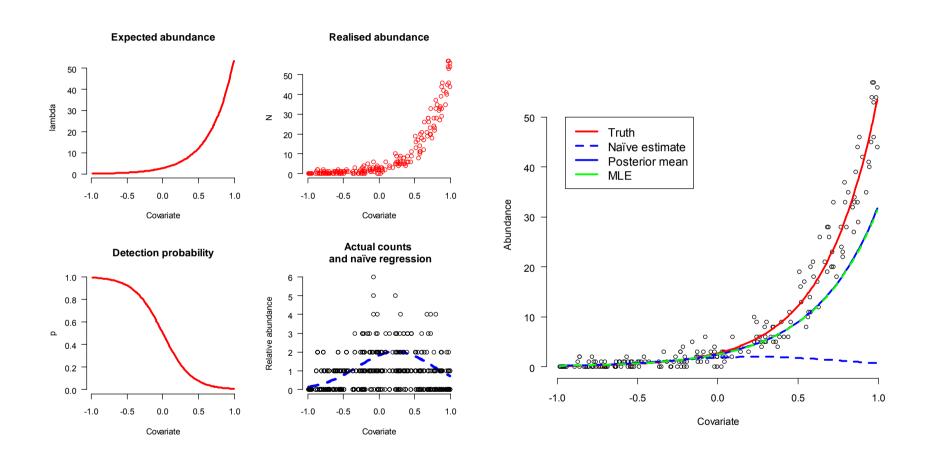
 trivial with program R, by varying #sites, #nreps, average N and p

ex. MLEs

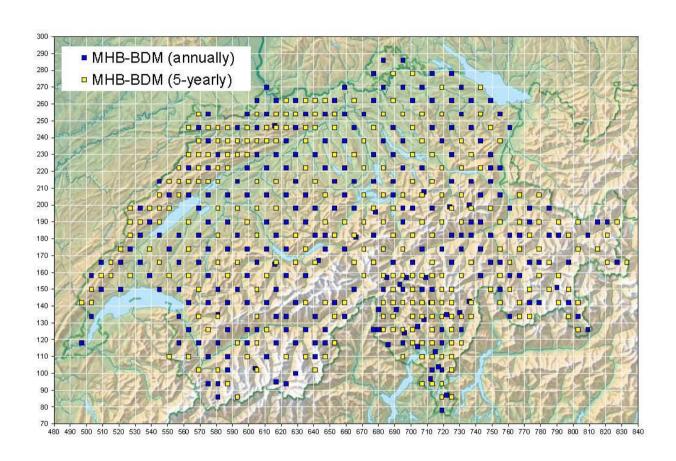


Two illustrations

(A) Really tricky simulated data

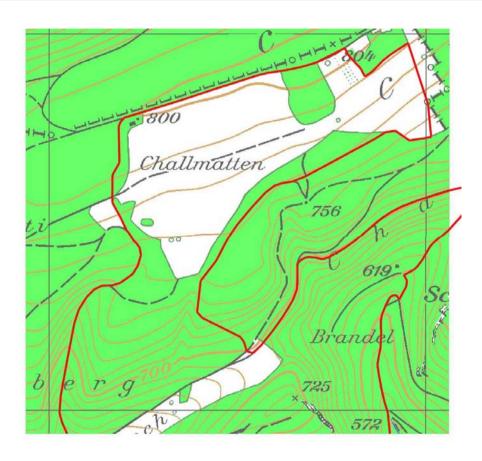


• Importance of accounting for p!



2 * 267 1km² quads, 3 reps/breeding season (15 April-30 June)

vogelwarte.ch



- Territory mapping: record all locations of all species
- Here: reduce to counts for each survey

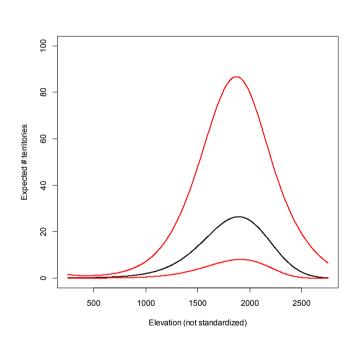
- Andy Royle's favourite Swiss bird: the willow tit
- estimate and model abundance and map things
- MLEs from unmarked, model selection using AIC, parametric bootstrap GOF

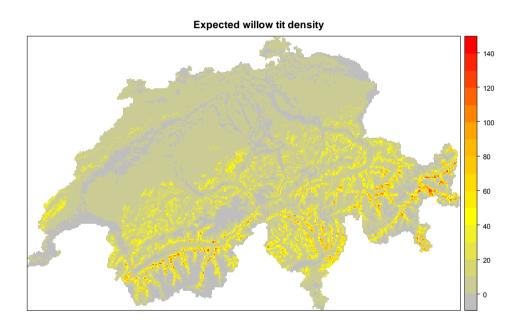
e.g.,

```
system.time(fm13 <- pcount(~day + (day^2)
~forest+elev+I(elev^2)+ I(elev^3)+ length, mhb.umf))</pre>
```

- Best Poisson mixture model did not fit
- Negative Binomial (≈ overdispersed Poisson) did fit

- what can we do after fitting the model ?
- -> try to understand what model is telling us: predictions!





- National population size estimate: ~ 380,000
- Bootstrap variance estimate: (132,110 1,193,516)
- Important assumption ???

Space in Nmix and related models

- adding up plot-specific N estimates assumes plot area is known
- this is not usually strictly true: holes, edge territories
- would have to use Nmix with distance sampling or some sort of spatially explicit capture-recapture to relax the "knownarea assumption"
- density and N can only be treated interchangeably when area known
- another assumption in many applications of Nmix models (or any kind of population size estimation)
- Chandler et al., AOAS, 2013: Nmix with underlying spatial model of animals

Time-for-space substitution in the Nmix

 instead of R spatial replicates in single season could have R temporal replicates (= seasons) of a single (or few sites)

•	e.g., year	observed data
	1990	9-10-11
	1991	4-2-6
	•••	
	2012	7-4-4

- Seems to work well for >20 years; do simulations!
- example Yamaura et al., JAPPL, 2011 (community Nmix model)

Extensions of the model (for all Nmix family)

- add effects of measured covariates
- changes in abundance model (mixing distribution)
- changes in detection model
- add effects of unmeasured covariates (random effects)
- add space (e.g., spatial exponential correlation function, CAR random site effects)
- multiple species, abundance-based community models
- change closed model to open models:
 - "trend models", Royle & Dorazio (2008);
 - implicit dynamics model, Chandler et al., Ecology, 2011
 - explicit dynamics model, Dail & Madsen, Biometrics, 2011

Extensions 1: covariates

- Never forget: heart of model is Poisson GLM, with logistic regression measurement error model attached
- All you can do with a Poisson or a Binomial GLM can also do to a Nmix model
- Adding covariates

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_{ij} \sim Binomial(N_i, p_{ij})$

add log and logit linear regression models:

$$log(\lambda_{i}) = \alpha_{0} + \alpha_{1} * x_{i,1}$$

$$logit(p_{ij}) = \beta_{0} + \beta_{1} * x_{i,1} + \beta_{2} * x_{i,2} + \beta_{3} * x_{ij,3}$$

Extensions 2: other abundance models

 Account for overdispersion: e.g., zero-inflation (1), Negative Binomial (2), Poisson log-normal (3):

1. State models: $z_i \sim Bernoulli(\psi_i)$

 $N_i \sim Poisson(z_i * \lambda_i)$

Observation model: $y_{ij} \sim Binomial(N_i, p_{ij})$

2. State model: $N_i \sim \text{Negative Binomial}(\lambda_i, \text{ alpha})$

Observation model: $y_{ii} \sim Binomial(N_i, p_{ii})$

3. State model: $N_i \sim Poisson(\lambda_i)$

 $log(\lambda_i) = a_i$, with $a_i \sim Normal(\mu_a, \sigma)$

Observation model: $y_{ij} \sim Binomial(N_i, p_{ij})$

Extensions 3: other detection models (overdisp.)

 Can acccount for effects of unobserved, latent covariates at site level (1), occasion level (2) or site-by-occasion level (3):

State model: $N_i \sim Poisson(\lambda_i)$

Observation model: $y_{ij} \sim Binomial(N_i, p_{ij})$

- 1. $logit(p_{ij}) = \beta_i$, with $\beta_i \sim Normal(\mu_{\beta}, \sigma)$
- 2. $logit(p_{ij}) = \beta_i$, with $\beta_i \sim Normal(\mu_{\beta}, \sigma)$
- 3. $logit(p_{ij}) = \beta_{ij}$, with $\beta_{ij} \sim Normal(\mu_{\beta}, \sigma)$

Extensions 4: adding space

- Standard models assume observations independent, given covariates
- Spatial or other dependencies may remain
- Add correlated, site-specific random effects:

```
N_i \sim Poisson(\lambda_i) log(\lambda_i) = a_i, with a_i \sim Normal(\mu_\alpha, \Sigma) \Sigma = distance-dependent variance-covariance matrix
```

- e.g., spatial-exponential correlation: Royle et al., *Ecol. Mono.*, 2007; Webster et al., *JABES*, 2008; Post van den Burg, *JAPPL*, 2011; Chelgren et al., *Ecology*, 2011
- conditional-autoregressive (CAR) models
- can both be implemented in WinBUGS/OpenBUGS (or MCMC coded up by hand)

Extensions 5: multi-species (community) models

- joint Nmix model for all species observed in a community
- can use data-augmentation to estimate # species never seen (Royle et al., *JCGS*, 2007; Royle and Dorazio, 2008)
- express occurrence, and therefore species richness, as deterministic function of abundance
- usual advantage of random effects modeling: improved inferences for rare species (see e.g., Zipkin et al., JAPPL, 2009)
- examples: Yamaura et al., *JAPPL*, 2012; Chandler et al., *Conservation Biology*, in press

Extensions 6: open models

- three motivations:
 - account for closure assumption violation
 - estimate trends
 - explicitly estimate dynamics
- three models:
 - Dodd & Dorazio, Herpetologica, 2004;
 Royle & Dorazio (book 2008);
 Kéry et al., JAPPL, 2009;
 Kéry & Schaub (book, 2012)
 (treat years as a block, trend models)
 - Chandler et al., *Ecology*, 2011 (implicit dynamics model)
 - Dail & Madsen, Biometrics, 2011 (explicit dynamics model)

Treat years as a block approach (and trends)

• Fit separate parameters in abundance model for each year

$$N_{ik} \sim Poisson(\lambda_{ik})$$
 (k indexes years)
 $log(\lambda_i) = a_k + stuff$
 $y_{ijk} \sim Binomial(N_i, p_{ij})$

can constrain annual estimates of log(expected N)

e.g.,
$$a_k = a_0 + \beta * year_k$$

 β is trend parameter (see Royle & Dorazio, 2008; Kéry et al., JAPPL, 2009)

Implicit dynamics: Chandler et al. (2011)

• multi-scale (3-level) model with one level for availability (1-temporary emigration)

Superpopulation model: $M_i \sim Poisson(\lambda)$

Random temporary emigration: $N_{ii} \sim Binomial(M_i, \theta)$

Observation model: $y_{ijk} \sim Binomial(N_i, p)$

- θ = Prob. of being exposed to sampling (1 TE prob.)
- Assumes random temporary emigration described by θ
- implicit dynamics: random "in/out"
- fitting function in unmarked: gpcount()

Explicit dynamics: the Dail-Madsen (2011) model

explicit demographic model (population dynamics model)

Initial condition: $N_{i1} \sim Poisson(\lambda)$

Survival process: $S_{it} \sim Binomial(N_{it-1}, \omega)$

Recruitment process: $G_{it} \sim Poisson(N_{it-1} * \gamma)$

Annual population size: $N_{it} = S_{it} + G_{it}$

Observation model: $y_{itk} \sim Binomial(N_{it}, p)$

- S_{it}: latent variable, survivors
- G_{it}: latent variable, recruits
- ω: apparent survival rate
- γ: recruitment rate

Explicit dynamics: the Dail-Madsen (2011) model

- Application: Chandler et al., JAPPL, 2011
- mythical model: can estimate population dynamics from unmarked individuals
- but: makes strong parametric assumptions
- has produced unrealistic survival estimates
- fitting function pcountOpen() in unmarked: VERY SLOW!
- can be fit in JAGS, but not Win/OpenBUGS (no clue why)
- more research is needed

 2-3-year postdoc partly on this model available at Swiss Ornithological Institute RIGHT NOW

Acknowledgements

- Andy Royle
- Richard Chandler
- Bill Link
- Emily Dennis
- Evan Cooch

